EDUC6104

Mathematics Curriculum Studies 3

10 Units

This course introduces students to the key concepts underlying a deep understanding of mathematical proof and topology. This course will consider the historical development of mathematical proof and topology and will examine current related pedagogical models within the field of secondary mathematics including catering for differentiated learning needs in the contemporary classroom.

Faculty Faculty of Education and Arts
School School of Education
Availability Semester 1 - 2015 (WebLearn GradSchool)
Learning Outcomes

On successful completion of this course, students will be able to:

  1. understand the key concepts related to various forms of mathematical proof and the field of topology;
  2. appreciate the mathematical knowledge and beliefs that learners bring to a learning task;
  3. apply a range of strategies for teaching secondary mathematics;
  4. recognise the common misconceptions that students may have in regard to the mathematical content covered; and
  5. recognise the benefits and issues associated with differentiated learning.
Content
  • The historical development of mathematical proof and its relationship to other forms of proof commonly accepted in contemporary society
  • Forms of mathematical proof including geometric, inductive, deductive, contradiction, reductio ad absurdum and non-euclidean geometric
  • Introduction to topology
  • teaching strategies related to mathematical content
  • common misconceptions related to the mathematical content

Differentiated learning in the contemporary classroom

Requisites
Assessment Items
  • In Term Test: Mathematics Content Examinations (Part A and Part B)
  • Written Assignment: Mathematics Content Assignment
  • Online Learning Activity: Online Discussion Task
Contact Hours
  • Self-Directed Learning: for 2 hour(s) per Week for Full Term
Course Materials
  • No Materials
Timetable 2015 Course Timetables for EDUC6104

Sound like the course for you?

  Apply Now