ELEC6160

Advanced Drives and Power Electronics

10 Units

This course teaches students to analyse the dynamic behaviour of D.C. and A.C machines in the context of their application, and use the analysis to design electric drives. Space vector theory is utilised to develop control strategies for these machines, especially vector control and torque and flux control. Students investigate advanced topics in power electronics, including design of gate and base circuits, multilevel converters, and electric utility applications.

Faculty Faculty of Engineering and Built Environment
School School of Electrical Engineering and Computing
Availability Semester 2 - 2018 (Callaghan)
Learning Outcomes

On successful completion of this course, students will be able to:

  1. Solve problems associated with electric drive systems and electric machines, and design advanced drives
  2. Solve complex problems associated with grid connected power electronics.
  3. Perform experiments on AC and DC drives, collect data using appropriate measurement equipment and analyse this data so that reasonable conclusions can be made.
  4. Perform as a member of a team in carrying out laboratory tasks.
  5. Perform as a member of a team in a high level engineering project making engineering design; resource allocation; component selection and algorithm applicability decisions.
  6. Perform work safely and be aware of the workplace health and safety implications of the tasks carried out.
Content
  1. DC drives
  2. AC drives - a) Field orientated control b)Torque and flux control
  3. Gate and Base drives
  4. Static VAR compensators
  5. Active filters
  6. High voltage DC converters
  7. Grid interconnection of renewable energy sources 
Assumed Knowledge ELEC3250 Power Electronics, ELEC3130 Electric Machines and Power Systems
Assessment Items
  • Formal Examination: Final examination
  • Quiz: Mid-semester quiz
  • Project: Project
  • Tutorial / Laboratory Exercises: Laboratories

Contact Hours

Callaghan

Laboratory

Face to Face On Campus 2 hour(s) per Week for Full Term

Lecture

Face to Face On Campus 3 hour(s) per Week for Full Term

Tutorial

Face to Face On Campus 1 hour(s) per Week for Full Term

Timetable 2018 Course Timetables for ELEC6160
Got a question?

Contact us for advice on how to apply, enrol, or for more information.

Ready to start?

Once you’ve read our Application guide you’re ready to apply